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Introduction @

« Past Mars missions landed within 100s of km %»
from designated target Lander < €
— Unguided lifting (Viking 1, 2) separakfon 7 Deosbit bum
— Unguided ballistic (Pathfinder, MER) orbiter . 5%
* New generation of Mars landers to deliver (ggg?gggmm -
massive payloads to within 10s of km from ey
target
— Requires lifting actively guided entry with g %
relartively high L/D (eg. MSL) 6 km (19 500 £e) + "]
« Guided entry requires reaction control system \  TPaxschuts
(RCS) W/
— Active control of direction of the lift vector é
- Rate damping &7 Aeroshell
« Guidance maneuvers take advantage of Jutidincn
dynamic pressure, so they take place in e 0 Tﬁp .
hypersonic and supersonic segments of the 1.4 kn (4600 ft) GakEiat
entry
— Effect of RCS on aerothermal environment can be — e =
significant, impact TPS ,m~~&_}
— RCS interference in aerodynamic characteristics Qﬁo

neds to be understood to reliably predict flight
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RCS/Gasdynamic Interaction Heritage @

Apolio
«  Entry Vehicle Control, NASA SP-8028, November 1969. Apollo

— Apollo 7 reentry: “considerable pitch and yaw control
activity in the transonic region during the final 2 min
before drogue deployment®, from simulation they
concluded that this was a result of thruster jet
interaction with flow around the vehicle and strong

Attitude Reaction
Command Jets Fired

Pitch down 2 and 4

winds. Pitchup  1and3

Yaw right 6and 8

* NASA TM-X-1063 Yawlet  Sand?
Roll left 10 and 11

— Mention of interference patterns on aftbody caused by
RCS jets
« NASA TN-D-6028
— Heating on the leeside of the spacecraft increased
during RCS firings up to 5 times that measured
between firings

Roll right 9and 12

Viking
« Blake, W. W., Polutchko, R. J.,”Hypersonic Experimental
Aerodynamic Characteristics of Viking Lander Capsule,”
Martin Marietta Corporation, TR-3709012, May 8, 1970
— Aero/RCS interaction estimated in wind tunnel tests at
M=20 using solid bodies to represent thruster plumes
— The data were inconclusive due to insufficient
accuracy of the low AOA data
— The recommendation was use a balance designed to
measure small C and C,, and large C, to minimize
data uncertainties, but this apparently was never
accomplished for Viking
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Reaction Control Systems @

ﬁ ‘ Viking Lander RCS \ ‘ MPL/Phoenix RCS \
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Reaction Control Systems (cont.)

Candidate MSL RCS

Thust Aft of CG

Thrust Ahead of CG




Near-capsule flowfield

bow shock

—

Flow around MSL Capsule at Mach 18.1
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Jet-Wake Interaction

BOW SHOCK

» Interaction of an underexpanded jet with crossflow
extensively studied
M,, P, —»

— Applicability of existing analyses to scientific v
planetary entry vehicles is limited

— Massively separated wake, jet is penetrating flows

SEPARATION SHOCK
SHOCKS IN JET

/<RECOMPRESSION

SHOCK

JET FLOW

of changing character z
. . o & SLOT LOCATION
« Analyses and results are configuration specific o X
— Interaction with attached vs. separated flow, local - f\
flow conditions ' Pl

— Pointing of the jet, location on the aftshell X (DISTANCE FROM SHOCK)
Image from AGARD No. 137

Interaction with attached flow Interaction with shear layer Interaction with separated flow

MSL RCS Mach 2.5 0=10°
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Aftbody Aerodynamics @
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Aerodynamic Effects

30% moment interference
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100% moment interference
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Aerothermal Effects

[slice along the jet axis]
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Summary

 RCS interference with aerodynamics

— Changes in aerodynamics occur in both supersonic and
hypersonic segments of the entry trajectory

» Control gain and aerodynamic cross coupling can
occur

* In some cases the authority of RCS can be
overwhelmed by the induced aerodynamic moments

— Computational and experimental analyses help bound the
phenomena

» Extensive experimental program to validate CFD
computations

» Supersonic and hypersonic regimes
« Computation using LAURA, DPLR, FUN3D, US3D

— Difficulties in both computational methods and experiment
* Maturety of computational tools

« Small interference moments in comparisson to the
overall capsule moments

* Impact of RCS on aerothermal evironments

— Aeroheating increase by as much as an order of
magnitude depending on the specifics of the jet
interaction

— Impact on TPS selection, cost, schedule

« Based on analyses performed to date paradigms have been
developed to minimize destructive interference of RCS jets
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EDL Systems

Table 1. Comparison of Mars Entry Capsules

Viking 1/2 Pathfinder MER A/B Phoenix MSL
0 O
Diameter, m 3.5 2.65 2.65 2.65 4.5
Entry Mass, kg 930 585 840 602 2919
Landed Mass, kg 603 360 539 364 1541
Landing Altitude, km -3.5 -1.5 -1.3 -3.5 +1.0
Landing Ellipse, km 420 x 200 100 x 50 80 x 20 75 x 20 <10x10
Relative Entry Vel., km/s 4.5/4.42 7.6 5.5 5.9 >5.5
Relative Entry FPA, deg -17.6 -13.8 -11.5 -13 -15.2
m/(CpA), kg/m? 63.7 62.3 89.8 65 126
Turbulent at Peak Heating? No No No No Yes
Peak Heat Flux, W/cm? 24 115 54 56 243
Hypersonic a, deg -11.2 0 0 0 -15.5
Hypersonic L/D 0.18 0 0 0 0.24
Control 3-axis Spinning Spinning 3-axis 3-axis
Guidance No No No No Yes

8/8/13
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Ideal Authority

Table 2. Comparison of ideal authority of Viking, MPL/Phoenix and MSL

N-m Kg-m? deg/sec?
My My M, Ixx Iyy I, Oy Oy oz
Viking 1, 2 152.7 146/-15 108 536 423 786 16.3 19.8/-2 7.9
9.4 1.6
MPL/Phoenix 10.7 58.07 10.06 192 189 286 3.2 17.6 2
MSL 675.4 980.7/- 705 3055 3952 4836 12.7 14.2/-1 8.4
1160 6.8
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Geometric Considerations @

« Same amount of pressure applied to different Yaw
locations on the backshell wil produce different 1, (mefterd) v
moments about the CG | R
1.31
* Moment arms (Ly, Ly), computed from a 1.12
surface-normal through a point and the location 0 i
. . . . cd
of the CG illustrate the regions of high ! 015
agn w . -0.04
sensitivity of capsule moments to changes in .23
surface pressure A b
— In yaw, capsule moments are very sensitive to 120 _

: . Z.. /D= -
change in pressure on the far side, and on the Xc./p=-.0215
parachute closeout cone Pitch x

— In pitch, gaps.ule moments are very sensitive to | meberd) 8
changes in wind/lee shoulder regions; the i T
parachute closeout cone can also generate Tos
significant torques if shocks/plumes impinge on it o2s
234
' 0.11 ca
=0.11
-0.34
=-0.57
I
_1“.ﬁ;
=-1.740
g /D4—.3
X /Da—.0215
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Intersecting plumes
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Backshell Heating

‘ %
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